If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1300=-16t^2+1700
We move all terms to the left:
1300-(-16t^2+1700)=0
We get rid of parentheses
16t^2-1700+1300=0
We add all the numbers together, and all the variables
16t^2-400=0
a = 16; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·16·(-400)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*16}=\frac{-160}{32} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*16}=\frac{160}{32} =5 $
| 14=-3x-2(-3x11) | | 5x-8=107 | | m-91=-2 | | 6=20x+1 | | 60x8=x | | -16t^2+96t+8=116 | | 12x-8-8x=20-3x | | 4x2-23=2+3 | | x=57-2x | | X+15=2x+30=2x-25 | | 14-x=15-0.5x | | 4x+26=9(x-1) | | 9x+5+2x=15+1x | | 8)5x-2)=64 | | 2(w+9)=-2w+34 | | 10x-8=8x-5+5x | | 2=9+1x | | 3/4k=12/35 | | 8(5x2)=64 | | 4+x/2=3.75 | | n+15-6=-1 | | 12w-10w=16 | | 3÷x-1=20 | | (2)1/4x+1/2x=44 | | 6b-2b=20 | | |11x+2|=-24 | | x+x=32+(218*0) | | 7b^2+8b+9=0 | | 2j+6j=16 | | 2x-21+6x=35 | | 16+4t=36 | | 20=80/x |